Exhaled breath profiling and eosinophilic airway inflammation in asthma – results of a pilot study

1AMC, Amsterdam, NL; 2AMC, Amsterdam, NL; 3Tor Vergata, Rome, IT; 4Unit for Electronics for Sensor Systems, Rome, IT; 5University of Manchester, UK; 6R&D IT, Janssen Research and Development, London, UK; 7Università Cattolica del Sacro Cuore, Rome, IT; 8Imperial College, London, UK; 9University of Southampton, UK; 10GSK, London, UK; 11CNRS Institute of Biological Sciences, Lyon, FR; 12AstraZeneca R&D, Mödling, SE & Areteva Ltd, Nottingham, UK

Rationale

- Eosinophilic inflammation in asthma is predictive for responses to inhaled steroids
- Sputum analysis is limited by requirements of lab facilities and not directly available results
- Breath volatile organic compounds (VOCs) may be useful for asthma phenotyping
- Exhaled air metabolomics measured by GC-MS is associated with eosinophilic inflammation in asthma

Hypothesis: Breathprint profiles analysed by electronic noses (eNoses) can be surrogate markers for eosinophilic airway inflammation

Aim

To test whether breathprints analysed by a composite eNose platform can discriminate eosinophilic asthma from non-eosinophilic asthma.

Methods

Inclusion: Patients with mild / severe asthma included in U-BIOPRED

Asthma: 1. history of wheeze
2. reversibility / PC20 / diurnal PEF variation / tapering med

Mild asthma: inhaled ICS (<500mcg FP) & non-smokers (<Spy)

Severe asthma: IMI-criteria2 (history of wheeze & high dose ICS >1000mcg FP & uncontrolled OR OCS OR frequent exacerbations)

Cross-sectional design:

- Spirometry, FeNO
- Sputum induction: (selected plug) count sputum eosinophils
- Local exhaled air collection → centralised analysis by eNose platform (see Figure 1)

Statistical analysis:

- Diagnosis: 1. Eosinophilic asthma; >3% sputum eosinophils
2. Non-eosinophilic asthma; <3% sputum eosinophils
- Stepwise discriminant analysis + cross-validation on all significantly associated exhaled markers (sensors+FeNO) analysed by t-test
- Bootstrap based ROC-curve

Table 1: Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Non-eosinophilic</th>
<th>Eosinophilic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age*</td>
<td>51.2 (15.4)</td>
<td>58.1 (9.6)</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>7/8</td>
<td>8/16</td>
</tr>
<tr>
<td>Post-FEV1 % predicted*</td>
<td>80.9 (24.4)</td>
<td>76.3 (16.2)</td>
</tr>
<tr>
<td>Tiffenau % predicted*</td>
<td>80.2 (16.1)</td>
<td>76.6 (11.7)</td>
</tr>
<tr>
<td>FeNO†</td>
<td>20.0 (11-33)</td>
<td>37.5 (27-73.3)</td>
</tr>
<tr>
<td>Oral CS (yes/no)</td>
<td>3/12</td>
<td>13/11</td>
</tr>
<tr>
<td>Sputum eosinophils %†</td>
<td>0.97 (0.2-1.9)</td>
<td>13.7 (9.9-27.9)</td>
</tr>
<tr>
<td>Sputum neutrophils %†</td>
<td>55.1 (30.3-88.7)</td>
<td>47.7 (35.5-60.5)</td>
</tr>
</tbody>
</table>

* Mean (Standard Deviation); † Median (interquartile range)

Conclusions

- eNose breathprints analysed by a composite eNose platform can distinguish between eosinophilic and non-eosinophilic asthma
- eNose sensors provide a stronger signal than FeNO, though the combination provides the best model

Implications

- eNoses may have a potential for subphenotyping of asthma
- eNose is an easily applied method, even less invasive than a sputum induction, to be used for patient selection in drug trials
- The inclusion has finished; Q3 2013 validation/confirmation in a larger sample-size

Figure 1: Flowchart of exhaled breath analyses by an eNose platform, through local sample collection and central analyses

Figure 2: Discriminant results (3 sensors + FeNO)

Figure 3: ROC-curve

References

1 Ibrahim et al. Thorax 2011; 66(9):804-9
3 Sensors + FeNO
4 Sensors + FeNO