Specific ventilation inequality and dead space components of lung clearance index in patients with asthma and cystic fibrosis

1Sherif Gonem, 1Sushiladevi Natarajan, 1Amisha Singapuri, 1Christopher E Brightling, 2Per Gustafsson, 3Alex Horsley, 1Salman Siddiqui

1Institute for Lung Health, University of Leicester, Leicester, United Kingdom
2Department of Paediatrics, Central Hospital, Skövde, Sweden
3Manchester Adult Cystic Fibrosis Centre, Manchester, United Kingdom

Address for correspondence:
Dr. Sherif Gonem
Respiratory BRU
Glenfield Hospital
Groby Road
Leicester
LE3 9QP, UK
Tel: 0044 116 2502842
Fax: 0044 116 250 2787
E-mail: sg330@le.ac.uk
Background

Lung clearance index (LCI) is a widely reported marker of gas mixing inefficiency within the airways that is derived using the multiple breath inert gas washout (MBW) technique. We developed two novel parameters, LCI$_{vent}$ and LCI$_{ds}$, to reflect the components of increased LCI due to (i) unequal convective ventilation between relatively large lung units, and (ii) increased respiratory dead space, respectively. We hypothesised that these parameters would be repeatable, would effectively discriminate between healthy controls and patients with asthma and cystic fibrosis (CF), and would distinguish between different sub-phenotypes of these diseases.

Methods

Washout data from sixty-six healthy control subjects, seventy-four patients with asthma, and forty-one patients with CF were fitted to a two-compartment model of gas mixing, and the parameters LCI$_{vent}$ and LCI$_{ds}$ were calculated.

Results

LCI$_{vent}$ and LCI$_{ds}$ were markedly elevated in patients with CF, and mildly elevated in patients with asthma, compared to controls, as illustrated in Figure 1. LCI$_{ds}$ was significantly raised in CF patients with chronic *P. aeruginosa* colonisation compared to those without chronic colonisation (1.49 vs 1.34, p = 0.004). LCI, LCI$_{vent}$ and LCI$_{ds}$ were significantly raised in CF patients with a severe genotype compared to those with a mild genotype. No significant differences were observed between any of the asthma sub-phenotypes (severe vs non-severe, poorly-controlled vs not poorly controlled, exacerbator vs non-exacerbator, and eosinophilic vs non-eosinophilic) with respect to any MBW parameter. The intraclass correlation
coefficients of LCI_{vent} and LCI_{ds} exceeded 0.85 in the asthma and CF groups, and 0.60 in controls.

Conclusion

The novel parameters LCI_{vent} and LCI_{ds} are repeatable and effectively discriminate between sub-phenotypes of CF, although their utility in asthma is currently unproven. Further studies are required to determine their utility in other airway diseases such as chronic obstructive pulmonary disease, to investigate their role as outcome measures in clinical trials, and to delineate their structural correlates.